Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab)

Package Insert

A RAPID TEST FOR THE QUALITATIVE DETECTION OF NOVEL CORONAVIRUS ANTIGENS IN NASOPHARYNGEAL SWAB. For professional In Vitro Diagnostic Use Only.

INTENDED USE

The Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab) is an *in vitro* diagnostic test for the qualitative detection of novel coronavirus antigens in Nasopharyngeal swab, using the rapid immunochromatographic method. The identification is based on the monoclonal antibodies specific for the novel coronavirus antigen. It will provide information for clinical doctors to prescribe correct medications.

SUMMARY

The novel coronaviruses belong to the β genus.COVID-19 is an acute respiratory infectious disease. People are generally susceptible. Currently, the patients infected by the novel coronavirus are the main source of infection; asymptomatic infected people can also be an infectious source. Based on the current epidemiological investigation, the incubation period is 1 to 14 days, mostly 3 to 7 days. The main manifestations include fever, fatigue and dry cough. Nasal congestion, runny nose, sore throat, myalqia and diarrhea are found in a few cases.

Severe acute respiratory syndrome - coronavirus- 2 (SARS-CoV-2) is an enveloped, non-segmented Positive sense RNA virus. It is the cause of the Coronavirus-0 disease (COVID-19) common to humans is contagious. SARS-CoV-2 has several structural proteins, including spike (S), envelope (E), membrane (M) and nucleocapsid(N).

At present, there are many variants of the Novel coronavirus (SARS-CoV-2), and the N501Y mutation and its approximate variants have attracted attention because their mutation position is located in the spike glycoprotein's receptor-binding domain of the virus, thereby changing the virus infected efficiency. In silico analysis demonstrated that the N501Y mutation did not alter the primary and tertiary protein structure of the spike protein RBD domain. Therefore, its antigenicity remains unchanged.

PRINCIPLE

The Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Device (swab) is an immunochromatographic membrane assay that uses highly sensitive monoclonal antibodies to Novel coronavirus.

The test strip is composed of the following three parts, namely sample pad, reagent pad and reaction membrane. The reagent membrane contains the colloidal-gold conjugated with the monoclonal antibodies against Novel coronavirus; the reaction membrane contains the secondary antibodies for Novel coronavirus, and the polyclonal antibodies against the mouse alobulin. which are pre-immobilized on the membrane.

When the sample is received by the test, the conjugated solution from the reagent pad gets dissolved and migrates along with the nasal sample. When the Novel coronavirus is present in the sample, a complex is formed between the anti-Novel coronavirus conjugate and the virus will be caught / detected by the specific anti- Novel coronavirus monoclonal coated on the T region. Whether the sample contains the virus or not, the solution continues to migrate to encounter another reagent (an anti-mouse IgG antibody) that binds the remaining conjugates, thereby producing a red line on the region C.

Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab) can detect both the SARS-Cov-2 nucleoprotein as well as the SARS-Cov-2 spike protein. By ELISA, we determined that the antibody we use binds to amino acids 511-531 of the SARS Cov-2 spike protein.

The detectability of genetic SARS-CoV-2 variants was tested by examining the sensitivity toward recombinant SARS-Cov-2 spike proteins (319 to 541aa). In these tests, the Novel Coronavirus (SARS-Cov-2) antigen-rapid test achieved the same values when detecting the B.1.1.7 (UK) and

B.1.351 (SA) variants as when detecting the standard variant.

REAGENTS

The reagent membrane contains the colloidal-gold conjugated with the monoclonal antibodies against Novel coronavirus; the reaction membrane contains the secondary antibodies for Novel coronavirus, and the polyclonal antibodies against the mouse globulin, which are pre-immobilized on the membrane.

PRECAUTIONS

For in vitro diagnostic use only.

Do not use after the expiration date.

· Ensure foil pouch containing test device is not damaged before opening for use.

 \bullet Perform test at room temperature 15 to 30°C. Wear gloves when taking the samples, avoid touching the reagent membrane and sample

window.

• All samples and used accessories should be treated as infectious and discarded according to local regulations.

Avoid using bloody samples.

STORAGE AND STABILITY

Store the Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab) at room temperature or refrigerated (2-30°C). Do not freeze. All reagents are stable until the expiration dates marked on their outer packaging and buffer vial.

The collected clinical nasopharyngeal swab should be used immediately. If the test cannot be performed immediately, the swab can be stored in a clean airtight container, and can be stored in a normal temperature environment (15 to 25° C) for 2 hours, and at the same time stably stored for 24 hours under refrigerated environment.

SPECIMEN COLLECTION AND PREPARATION

1. Specimen collection:

It is applicable to the diagnosis of the Novel coronavirus from the samples of Nasopharyngeal swab. Using freshly collected samples for optimal test performance. Inadequate sample collection or improper sample handling may yield a false-negative result.

Completely insert the sterilized swab supplied in this kit into the nasal basin, and swab several times to collect the epidermal cells of the mucus.

2. Specimen preparation:

1) Take out 1 bottle of Sample Extraction Buffer, remove the bottle cap, add all the extraction buffer into the extraction tube.

2) Insert the swab into the extraction tube which contains Sample Extraction Buffer. Rotate the swab inside the tube using a circular motion to roll the side of the extraction tube so that liquid is expressed and reabsorbed from the swab, remove the swab. The extracted solution will be used as test sample.

MATERIALS

Materials provided Swab • Extraction Tube

- Test Device
 Sterilized Swab
 Package Insert
 Nozzle with filter
 - Nozzle with filter
 Sample Extraction Buffer

Tube Stand*
 Negative control(swab)
 Positive control(swab)
 The 25-test package contains the tube stand, the 5-test package use the test box itself as tube

Materials required but not provided

DIRECTIONS FOR USE

Allow the test, specimen, extraction buffer to equilibrate to room temperature (15-30°C) prior to testing.

For clinical specimen preparation

stand

Timer

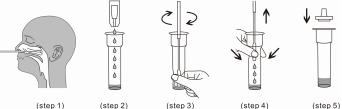
1. Completely insert the sterilized swab supplied in this kit into the nasal basin, and swab several times to collect the epidermal cells of the mucus.

2. Unscrew the whole cap of the specimen collection tube, take out 1 bottle of Sample Extraction Buffer, remove the bottle cap, add all the extraction buffer into the extraction tube.

3.Place the sterilized swab specimen in the sample extraction buffer. Rotate the swab for approximately 10 seconds while pressing the head against the inside of the tube to release the antigen in the swab.

4.Remove the sterilized swab while squeezing the sterilized swab head against the inside of Buffer as you remove it to expel as much liquid as possible from the swab. Discard the sterilized swab in accordance with your biohazard waste disposal protocol.

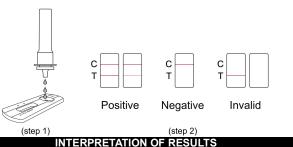
 Screw on and tighten the cap onto the specimen collection tube, then shake the specimen collection tube vigorously to mix the specimen and the sample extraction buffer. See illustration 4.


For control swab preparation

1 Unscrew the whole cap of the specimen collection tube, take out 1 bottle of Sample Extraction Buffer, remove the bottle cap, add all the extraction buffer into the extraction tube.

2 Place the control swab in the sample extraction buffer. Rotate the swab for approximately 10 seconds while pressing the head against the inside of the tube to release the antigen in the swab.

3 Remove the control swab.


4 Screw on and tighten the cap onto the specimen collection tube, then **shake the specimen collection tube vigorously** to mix the specimen and the sample extraction buffer. See illustration.

When the sample is ready, take the following procedures to complete the test:

1, Remove the test device from the sealed foil pouch and use it as soon as possible. Best results will be obtained if the assay is performed immediately after opening the foil pouch. Put the test device on a clean and flat surface.

2, Transfer 3 drops of sample into the sample well of test device vertically, start the timer, read the result at 10~20 minutes. Don't interpret the result after 20 minutes.

(Please refer to the illustration above)

POSITIVE: Two red lines appear. One red line appears in the control region(C), and one red line in the test region(T). The shade of color may vary, but it should be considered positive whenever there is even a faint line.

NEGATIVE: Only one red line appears in the control region(C), and no line in the test region(T). The negative result indicates that there are no Novel coronavirus particles in the sample or the number of viral particles is below the detectable range.

INVALID: No red line appears in the control region(\tilde{C}). The test is invalid even if there is a line on test region(T). Insufficient sample volume or incorrect procedural techniques are the most likely reasons for control line failure. Review the test procedure and repeat the test using a new test device. If the problem persists, discontinue using the test kit immediately and contact your local distributor

LIMITATIONS

 The Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab) is an acute-phase screening test for qualitative detection. Sample collected may contain antigen concentration below the reagent's sensitivity threshold, so a negative test result does not exclude infection with novel coronavirus

 The Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab) detects viable and non-viable novel coronavirus antigen. Test performance depends on antigen load in the sample and may not correlate with cell culture performed on the same sample. A positive test does not rule out the possibility that other pathogens may be present, therefore, the results must be compared with all other available clinical and laboratory information to make an accurate diagnosis.

 A negative test result may occur if the level of extracted antigen in a specimen is below the sensitivity of the test or if poor quality specimen is obtained

Performance of the test has not been established for monitoring antiviral treatment of novel coronavirus.

· Positive test results do not rule out co-infections with other pathogens.

Negative test results are not intended to rule in other coronavirus infection except the SARS-Cov-2.

Children tend to shed virus for longer periods of time than adults, which may result in differences in sensitivity between adults and children List.

 A negative result may occur if the concentration of antigen in a specimen is below the detection limit of the test or if the specimen was collected or transported improperly, therefore a negative test result does not eliminate the possibility of SARS-Cov-2 infection, and should be confirmed by viral culture or PCR

QUALITY CONTROL

A procedural control is included in the test. A colored line appearing in the control line region (C) is considered an internal procedural control.

Positive Control and Negative control swab are supplied with this kit; it is recommended that positive and negative controls be tested as a good laboratory practice to confirm the test procedure and to verify proper test performance. Please refer to specimen collection and preparation to prepare the control swab and test according to direction for use, when test positive control, the result should be positive and when test negative control, the test result should be negative.

PERFORMANCE CHARACTERISTICS

Clinical Evaluation

Clinical evaluation was performed to compare the results obtained by Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab) and PCR. The results were summarized below:

Table: Novel Coronavirus	(SARS-Cov-2) Antige	n Rapid Test Cassette	(swab) vs. PCR

Method		2019-nCoV Nucleic Acid Test Kit (RT-PCR)		Total Results	
The Novel Coronavirus Results		Positive	Negative		
(SARS-Cov-2) Antigen Rapid	Positive	201	0	201	
Test Cassette (Swab)	Negative	8	450	458	
Total Results		209	450	659	

Clinical sensitivity = 201/209=96.17 % (95%Cl* 92.51% to 98.17%)

Clinical specificity = 450/450>99.9% (95%Cl* 98.98% to 100%) Accuracy: (201+450)/ (201+0+8+450) *100%=98.79% (95%Cl* 97.58% to 99.43%) *Confidence Interval

Clinical sensitivity by days post onset

The clinical sensitivity of the test device stratified by days post onset of symptoms is described as follow:

Days post onset of symptoms	Positive	Negative	Tested number	Detectable rate
0-3	160	0	160	100%
4-7	19	2	21	90.48%
>7	22	6	28	78.57%
Total	201	8	209	/

In conclusion, the patients should test the COVID-19 as soon as possible when he or her has the manifestations include fever, fatigue and dry cough, nasal congestion, runny nose, sore throat, myalgia and diarrhea.

PRECISION

Precision of test Device was established using in-house reference panels containing negative specimens and positive specimens. There were no differences observed inter-batch/within-batch, between-sites, between performers and between-days.

Limit of Detection (LOD)					
2019-nCoV Strain Tested	Realy Te	ch product			
Stock 2019-nCoV Concentration	1 X 10 ⁶ T	CID₅₀/mL			
Dilution	1/100	1/200	1/400	1/800	1/1600
Concentration in Dilution tested (TCID ₅₀ /ml)	1X10⁴	5X10 ³	2.5X 10 ³	1.25X10 ³	6.25X10 ²
Call rates of 20 replicates near cut-off	100(20/20)	100(20/20)	100(20/20)	95(19/20)	10(2/20)
Limit of detection (LOD) per Virus Strain 1.25 X 10 ³ TCID ₅₀ /mL					

Cross Reaction

The test results are below the corresponding concentration of the substances in the table below, which has no effect on the negative and positive test results of this reagent, and there is no cross-reaction.

Virus/Bacteria/Parasite	Strain	Concentration
MERS-coronavirus	N/A	72µg/mL
	Туре 1	1.5 x 10 ⁶ TCID ₅₀ /mL
	Туре 3	7.5 x 10 ⁶ TCID ₅₀ /mL
	Туре 5	4.5 x 106TCID ₅₀ /mL
	Туре 7	1.0 x 10 ⁶ TCID ₅₀ /mL
Adenovirus	Туре 8	1.0 x 10 ⁶ TCID ₅₀ /mL
	Type 11	2.5 x 106TCID ₅₀ /mL
	Type 18	2.5 x 106TCID ₅₀ /mL
	Type 23	6.0 x 10 ⁶ TCID ₅₀ /mL
	Type 55	1.5 x 10 ⁶ TCID ₅₀ /mL
	H1N1 Denver	3.0 x 10 ⁸ TCID ₅₀ /mL
	H1N1 WS/33	2.0 x 10 ⁸ TCID ₅₀ /mL
Influenza A	H1N1 W3/33 H1N1 A/Mal/302/54	1.5 x 10 ⁸ TCID ₅₀ /mL
Iniluenza A		7.6 x 10 ⁸ TCID ₅₀ /mL
	H1N1 New Caledonia	
	H3N2 A/Hong Kong/8/68	4.6 x 10 ⁸ TCID ₅₀ /mL
	Nevada/03/2011	1.5 x 108TCID ₅₀ /mL
Influenza B	B/Lee/40	8.5 x 10 ⁸ TCID ₅₀ /mL
	B/Taiwan/2/62	4.0 x 10 ⁸ TCID ₅₀ /mL
Respiratory syncytial virus	N/A	2.5 x 106TCID ₅₀ /mL
	Bloomington-2	1 x 10 ⁵ PFU/mL
Legionella pneumophila	Los Angeles-1	1 x 10 ⁵ PFU/mL
	82A3105	1 x 10 ⁵ PFU/mL
Rhinovirus A16	N/A	1.5 x 10 ⁶ TCID ₅₀ /mL
	K	1 x 10 ⁵ PFU/mL
Maria ha shariyara kulo susula sis	Erdman HN878	1 x 10 ⁵ PFU/mL 1 x 10 ⁵ PFU/mL
Mycobacterium tuberculosis		1 x 10 ⁵ PFU/mL
	CDC1551 H37Rv	1 x 10 ⁵ PFU/mL
	4752-98 [Maryland (D1)6B-17]	1 x 10 ⁵ PFU/mL
	178 [Poland 23F-16]	1 x 10 ⁵ PFU/mL
Streptococcus pneumonia	262 [CIP 104340]	1 x 10 ⁵ PFU/mL
	Slovakia 14-10 [29055]	1 x 10 ⁵ PFU/mL
Streptococcus pyrogens	Typing strain T1 [NCIB 11841, SF 130]	1 x 10 ⁵ PFU/mL
	Mutant 22	1 x 10⁵PFU/mL
Mycoplasma pneumoniae	FHstrainofEatonAgent [NCTC10119]	1 x 10⁵PFU/mL
	36M129-B7	1 x 10⁵PFU/mL
Coronavirus	229E	1.5 x10 ⁶ TCID ₅₀ /mL
	OC43	1.5 x10 ⁶ TCID ₅₀ /mL
	NL63	1.5 x 10 ⁶ TCID ₅₀ /mL
	HKU1	1.5 x 10 ⁶ TCID ₅₀ /mL
Human etapneumovirus (hMPV) 3 Type B1	Peru2-2002	1.5 x 10 ⁶ TCID ₅₀ /mL
Human Metapneumovirus (hMPV) 16 Type A1	IA10-2003	1.5 x 106TCID ₅₀ /mL

Parainfluenza virus	Туре 1	1.5 x 10 ⁶ TCID ₅₀ /mL
	Туре 2	1.5 x 10 ⁶ TCID₅₀/mL
	Туре 3	1.5 x 10 ⁶ TCID₅₀/mL
	Type 4A	1.5 x 10 ⁶ TCID₅₀/mL

Interfering Substances Reaction

When tested using the Novel Coronavirus (SARS-Cov-2) Antigen Rapid Test Cassette (swab), there was no interference between the device reagents and the Potential interference substances listed in below table that would create false positive or negative results for SARS-Cov-2 antigen.

SARS-Cov-z anligen.			
Substance	Concentration	Substance	Concentration
Mucin	100µg/mL	Acetylsalicylic acid	3.0 mM
Whole Blood	5% (v/v)	Ibuprofen	2.5 mM
Biotin	100µg/mL	Mupirocin	10 mg/mL
Neo-Synephrine (Phenylephrine)	5%(v/v)	Tobramycin	10µg/mL
Afrin Nasal Spray (Oxymetazoline)	5%(v/v)	Erythromycin	50uM
Saline Nasal Spray	5%(v/v)	Ciprofloxacin	50uM
Sodium Cromoglycate	10 mg/mL	Ceftriaxone	110mg/mL
Olopatadine Hydrochloride	10 mg/mL	Meropenem	3.7µg/mL
Zanamivir	5 mg/mL	Tobramycin	100µg/mL
Oseltamivir	10 mg/mL	Histamine Hydrochloride	100µg/mL
Artemether-lumefantrine	50uM	Peramivir	1mmol/mL
Doxycycline hyclate	50uM	Flunisolide	100µg/mL
Quinine	150uM	Budesonide	0.64nmol/ L
Lamivudine	1 mg/mL	Fluticasone	0.3ng/mL
Ribavirin	1 mg/mL	Lopinavir	6µg/mL
Daclatasvir	1 mg/mL	Ritonavir	8.2mg/mL
Acetaminophen	150uM	Abidor	417.8ng/mL
Pooled human nasal wash	N/A	/	/

SYMBOLS					
Symbol	Meaning	Symbol	Meaning		
IVD	In vitro diagnostic medical device	J.	Storage temperature limit		
***	Manufacturer	EC REP	Authorized representative in the European Community		
M	Date of Manufacture	\sum	Use by date		
\otimes	Do not reuse	Ĩ	Consult instruction for use		
LOT	Batch code	CE	Meet the requirements of EC Directive 98/79/EC		

Hangzhou Realy Tech Co., Ltd. #2 Building, No. 763, Yuansha Village, Xinjie Street, Xiaoshan District, 311200 Hangzhou City, Zhejiang Province, PEOPLE'S REPUBLIC OF CHINA Website: www.realytech.com

EC REP

CE

Luxus Lebenswelt GmbH Kochstr.1,47877, Willich, Germany

> Number: 1100054242 Version:4.1 Effective Date:2021-07-28